106 research outputs found

    A Feature-Based Comparison of Evolutionary Computing Techniques for Constrained Continuous Optimisation

    Full text link
    Evolutionary algorithms have been frequently applied to constrained continuous optimisation problems. We carry out feature based comparisons of different types of evolutionary algorithms such as evolution strategies, differential evolution and particle swarm optimisation for constrained continuous optimisation. In our study, we examine how sets of constraints influence the difficulty of obtaining close to optimal solutions. Using a multi-objective approach, we evolve constrained continuous problems having a set of linear and/or quadratic constraints where the different evolutionary approaches show a significant difference in performance. Afterwards, we discuss the features of the constraints that exhibit a difference in performance of the different evolutionary approaches under consideration.Comment: 16 Pagesm 2 Figure

    A memetic algorithm based on Artificial Bee Colony for optimal synthesis of mechanisms

    Get PDF
    En este documento se presenta una propuesta novedosa de un algoritmo híbrido modular, como herramienta para resolver problemas de ingeniería del mundo real. Se implementa y aplica un algoritmo memético, MemMABC, para la solución de dos casos de diseño de mecanismos, con el fin de evaluar su eficiencia y rendimiento. El algoritmo propuesto es simple y flexible debido a su modularidad; estas características lo vuelven altamente reutilizable para ser aplicado en una amplia gama de problemas de optimización. Las soluciones de los casos de estudio también son modulares, siguiendo un esquema de programación estructurada que incluye el uso de variables globales para la configuración, y de subrutinas para la función objetivo y el manejo de las restricciones. Los algoritmos meméticos son una buena opción para resolver problemas duros de optimización, debido a la sinergia derivada de la combinación de sus componentes: una metaheurística poblacional para búsqueda global y un método de refinamiento local. La calidad en los resultados de las simulaciones sugiere que el MemMABC puede aplicarse con éxito para la solución de problemas duros de diseño en ingeniería.In this paper a novel proposal of a modular hybrid algorithm as a tool for solving real-world engineering problems is presented. A memetic algorithm, MemMABC, is implemented with this approach and applied to solve two case studies of mechanism design, in order to evaluate its efficiency and performance. Because of its modularity, the proposed algorithm is simple and flexible; these features make it quite reusable to be applied on different optimization problems, with a wide scope. The solutions of the optimization problems are also modular, following a scheme of structured programming that includes the use of global variables for configuration, and subroutines for the objective function and the restrictions. Memetic algorithms are a good option to solve hard optimization problems, because of the synergy derived from the combination of their components: a global search population-based metaheuristic and a local refinement method. The quality of simulation results suggests that MemMABC can be successfully applied to solve hard problems in engineering design.Peer Reviewe

    Application of Permutation Genetic Algorithm for Sequential Model Building–Model Validation Design of Experiments

    Get PDF
    YesThe work presented in this paper is motivated by a complex multivariate engineering problem associated with engine mapping experiments, which require efficient Design of Experiment (DoE) strategies to minimise expensive testing. The paper describes the development and evaluation of a Permutation Genetic Algorithm (PermGA) to support an exploration-based sequential DoE strategy for complex real-life engineering problems. A known PermGA was implemented to generate uniform OLH DoEs, and substantially extended to support generation of Model Building–Model Validation (MB-MV) sequences, by generating optimal infill sets of test points as OLH DoEs, that preserve good space filling and projection properties for the merged MB + MV test plan. The algorithm was further extended to address issues with non-orthogonal design spaces, which is a common problem in engineering applications. The effectiveness of the PermGA algorithm for the MB-MV OLH DoE sequence was evaluated through a theoretical benchmark problem based on the Six-Hump-Camel-Back (SHCB) function, as well as the Gasoline Direct Injection (GDI) engine steady state engine mapping problem that motivated this research. The case studies show that the algorithm is effective at delivering quasi-orthogonal space-filling DoEs with good properties even after several MB-MV iterations, while the improvement in model adequacy and accuracy can be monitored by the engineering analyst. The practical importance of this work, demonstrated through the engine case study, also is that significant reduction in the effort and cost of testing can be achieved.The research work presented in this paper was funded by the UK Technology Strategy Board (TSB) through the Carbon Reduction through Engine Optimization (CREO) project

    On a smoothed penalty-based algorithm for global optimization

    Get PDF
    This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an ε -global minimizer is proved. At each iteration k, the framework requires the ε(k) -global minimizer of a subproblem, where ε(k)→ε . We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an ε(k) -global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the ε(k)-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods.The authors would like to thank two anonymous referees for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundac¸ao para a Ci ˜ encia e Tecnologia within the projects UID/CEC/00319/2013 and ˆ UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    Dynamic differential evolution with combined variants and a repair method to solve dynamic constrained optimization problems: an empirical study

    No full text
    An empirical study of the algorithm dynamic differential evolution with combined variants with a repair method (DDECV + Repair) in the solution of dynamic constrained optimization problems is presented. Unexplored aspects of the algorithm are of particular interest in this work: (1) the role of each one of its elements, (2) its sensitivity to different change frequencies and change severities in the objective function and the constraints, (3) its ability to detect a change and recover after it, besides its diversity handling (percentage of feasible and infeasible solutions) during the search, and (4) its performance with dynamism present in different parts of the problem. Seven performance measures, eighteen recently proposed test problems and eight algorithms found in the specialized literature are considered in four experiments. The statistically validated results indicate that DDECV + Repair is robust to change frequency and severity variations, and that it is particularly fast to recover after a change in the environment, but highly depends on its repair method and its memory population to provide competitive results. DDECV + Repair shows evidence on the convenience of keeping a proportion of infeasible solutions in the population when solving dynamic constrained optimization problems. Finally, DDECV + Repair is highly competitive particularly when dynamism is present in both, objective function and constraints.María-Yaneli Ameca-Alducin, Efrén Mezura-Montes, Nicandro Cruz-Ramíre
    corecore